skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, W_Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The understanding of novae, the thermonuclear eruptions on the surfaces of white dwarf stars in binaries, has recently undergone a major paradigm shift. Though the bolometric luminosity of novae was long thought to arise directly from photons supplied by the thermonuclear runaway, recent gigaelectronvolt (GeV) gamma-ray observations have supported the notion that a significant portion of the luminosity could come from radiative shocks. More recently, observations of novae have lent evidence that these shocks are acceleration sites for hadrons for at least some types of novae. In this scenario, a flux of neutrinos may accompany the observed gamma rays. As the gamma rays from most novae have only been observed up to a few GeV, novae have previously not been considered as targets for neutrino telescopes, which are most sensitive at and above teraelectronvolt (TeV) energies. Here, we present the first search for neutrinos from novae with energies between a few GeV and 10 TeV using IceCube-DeepCore, a densely instrumented region of the IceCube Neutrino Observatory with a reduced energy threshold. We search both for a correlation between gamma-ray and neutrino emission as well as between optical and neutrino emission from novae. We find no evidence for neutrino emission from the novae considered in this analysis and set upper limits for all gamma-ray detected novae. 
    more » « less
  2. Abstract High-energy tau neutrinos are rarely produced in atmospheric cosmic-ray showers or at cosmic particle accelerators, but are expected to emerge during neutrino propagation over cosmic distances due to flavor mixing. When high energy tau neutrinos interact inside the IceCube detector, two spatially separated energy depositions may be resolved, the first from the charged current interaction and the second from the tau lepton decay. We report a novel analysis of 7.5 years of IceCube data that identifies two candidate tau neutrinos among the 60 “High-Energy Starting Events” (HESE) collected during that period. The HESE sample offers high purity, all-sky sensitivity, and distinct observational signatures for each neutrino flavor, enabling a new measurement of the flavor composition. The measured astrophysical neutrino flavor composition is consistent with expectations, and an astrophysical tau neutrino flux is indicated at 2.8$$\sigma $$ σ significance. 
    more » « less
  3. Abstract Gamma-ray bursts (GRBs) have long been considered a possible source of high-energy neutrinos. While no correlations have yet been detected between high-energy neutrinos and GRBs, the recent observation of GRB 221009A—the brightest GRB observed by Fermi-GBM to date and the first one to be observed above an energy of 10 TeV—provides a unique opportunity to test for hadronic emission. In this paper, we leverage the wide energy range of the IceCube Neutrino Observatory to search for neutrinos from GRB 221009A. We find no significant deviation from background expectation across event samples ranging from MeV to PeV energies, placing stringent upper limits on the neutrino emission from this source. 
    more » « less